monostable multivibrator using 555 IC

 

Monostable 555 Timer

monostable 555 timer

When a negative ( 0V ) pulse is applied to the trigger input (pin 2) of the Monostable configured 555 Timer oscillator, the internal comparator, (comparator No1) detects this input and “sets” the state of the flip-flop, changing the output from a “LOW” state to a “HIGH” state. This action in turn turns “OFF” the discharge transistor connected to pin 7, thereby removing the short circuit across the external timing capacitor, C1.

This action allows the timing capacitor to start to charge up through resistor, R1 until the voltage across the capacitor reaches the threshold (pin 6) voltage of 2/3Vcc set up by the internal voltage divider network. At this point the comparators output goes “HIGH” and “resets” the flip-flop back to its original state which in turn turns “ON” the transistor and discharges the capacitor to ground through pin 7. This causes the output to change its state back to the original stable “LOW” value awaiting another trigger pulse to start the timing process over again. Then as before, the Monostable Multivibrator has only “ONE” stable state.

The Monostable 555 Timer circuit triggers on a negative-going pulse applied to pin 2 and this trigger pulse must be much shorter than the output pulse width allowing time for the timing capacitor to charge and then discharge fully. Once triggered, the 555 Monostable will remain in this “HIGH” unstable output state until the time period set up by the R1 x C1 network has elapsed. The amount of time that the output voltage remains “HIGH” or at a logic “1” level, is given by the following time constant equation.

555 timer equation

Where, t is in seconds, R is in Ω and C in Farads.

555 Timer Example No1

Monostable 555 Timer is required to produce a time delay within a circuit. If a 10uF timing capacitor is used, calculate the value of the resistor required to produce a minimum output time delay of 500ms.

500ms is the same as saying 0.5s so by rearranging the formula above, we get the calculated value for the resistor, R as:

555 monostable timer example

The calculated value for the timing resistor required to produce the required time constant of 500ms is therefore, 45.5KΩ. However, the resistor value of 45.5KΩ does not exist as a standard value resistor, so we would need to select the nearest preferred value resistor of 47kΩ which is available in all the standard ranges of tolerance from the E12 (10%) to the E96 (1%), giving us a new recalculated time delay of 517ms.

If this time difference of 17ms (500 – 517ms) is unacceptable instead of one single timing resistor, two different value resistor could be connected together in series to adjust the pulse width to the exact desired value, or a different timing capacitor value chosen.

We now know that the time delay or output pulse width of a monostable 555 timer is determined by the time constant of the connected RC network. If long time delays are required in the 10’s of seconds, it is not always advisable to use high value timing capacitors as they can be physically large, expensive and have large value tolerances, e.g, ±20%.

One alternative solution is to use a small value timing capacitor and a much larger value resistor up to about 20MΩ’s to produce the require time delay. Also by using one smaller value timing capacitor and different resistor values connected to it through a multi-position rotary switch, we can produce a Monostable 555 timer oscillator circuit that can produce different pulse widths at each switch rotation such as the switchable Monostable 555 timer circuit shown below.

Post a Comment

0 Comments